skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gao, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rapid proliferation of the Internet of Things (IoT) necessitates compact, sustainable, and autonomous energy sources for distributed electronic devices. Microbial fuel cells (MFCs) offer an eco‐friendly alternative by converting organic matter into electrical energy using living micro‐organisms. However, their integration into microsystems faces significant challenges, including incompatibility with microfabrication, fragile anode materials, low electrical conductivity, and compromised microbial viability. Here, this study introduces a microscale biobattery platform integrating laser powder bed fusion‐fabricated 316L stainless steel anodes with resilient, spore‐formingBacillus subtilisbiocatalysts. The 3D‐printed gyroid scaffolds provide high surface‐to‐volume ratios, submillimeter porosity, and tunable roughness, enhancing microbial colonization and electron transfer. The stainless steel ensures mechanical robustness, chemical stability, and superior conductivity.Bacillus subtilisspores withstand harsh conditions, enabling prolonged storage and rapid, on‐demand activation. The biobattery produces 130 μW of power, exceeding conventional microscale MFCs, with exceptional reuse stability. A stack of six biobatteries achieves nearly 1 mW, successfully powering a 3.2‐inch thin‐film transistor liquid crystal display via capacitor‐assisted energy buffering, demonstrating practical applicability. This scalable, biologically resilient, and fabrication‐compatible solution advances autonomous electronic systems for IoT applications. 
    more » « less
  2. Abstract We introduce a groundbreaking proof-of-concept for a novel glucose monitoring transducing mechanism, marking the first demonstration of a spore-forming microbial whole-cell sensing platform. The approach uses selective and sensitive germination ofBacillus subtilisspores in response to glucose in potassium-rich bodily fluids such as sweat. As the rate of germination and the number of metabolically active germinating cells are directly proportional to glucose concentration, the electrogenic activity of these cells—manifested as electricity—serves as a self-powered transducing signal for glucose detection. Within a microengineered, paper-based microbial fuel cell (MFC), these electrical power outputs are measurable and can be visually displayed through a compact interface, providing real-time alerts. The dormant spores extend shelf-life, and the self-replicating bacteria ensure robustness. The MFC demonstrated a remarkable sensitivity of 2.246 µW·(log mM)−1·cm−2to glucose concentrations ranging from 0.2 to 10 mM, with a notably lower limit of detection at ~0.07 mM. The sensor exhibited exceptional selectivity, accurately detecting glucose even in the presence of various interferents. Comparative analyses revealed that, unlike conventional enzymatic biosensors whose performance degrades significantly through time even when inactive, the spore-based MFC is stable for extended periods and promptly regains functionality when needed. This preliminary investigation indicates that the spore-forming microbial whole-cell sensing strategy holds considerable promise for efficient diabetes management and can be extended toward noninvasive wearable monitoring, overcoming critical challenges of current technologies and paving the way for advanced biosensing applications. 
    more » « less
  3. Abstract Disposable wearable electronics are valuable for diagnostic and healthcare purposes, reducing maintenance needs and enabling broad accessibility. However, integrating a reliable power supply is crucial for their advancement, but conventional power sources present significant challenges. To address that issue, a novel paper‐based moist–electric generator is developed that harnesses ambient moisture for power generation. The device features gradients for functional groups and moisture adsorption and architecture of nanostructures within a disposable paper substrate. The nanoporous, gradient‐formed spore‐based biofilm and asymmetric electrode deposition enable sustained high‐efficiency power output. A Janus hydrophobic–hydrophilic paper layer enhances moisture harvesting, ensuring effective operation even in low‐humidity environments. This research reveals that the water adsorption gradient is crucial for performance under high humidity, whereas the functional group gradient is dominant under low humidity. The device delivers consistent performance across diverse conditions and flexibly conforms to various surfaces, making it ideal for wearable applications. Its eco‐friendly, cost‐effective, and disposable nature makes it a viable solution for widespread use with minimal environmental effects. This innovative approach overcomes the limitations of traditional power sources for wearable electronics, offering a sustainable solution for future disposable wearables. It significantly enhances personalized medicine through improved health monitoring and diagnostics. 
    more » « less
  4. We describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and a locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contraction strategies, we present benchmark fermionic projected entangled pair state simulations of finite Hubbard models defined on the three-dimensional diamond lattice and random regular graphs. Published by the American Physical Society2025 
    more » « less